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Abstract  

The polynomial x
4 

+1 is irreducible in Z[x] but is locally reducible, that is, it factors modulo p 

for all primes p. In this paper we investigate this phenomenon and prove that for any 

composite natural number N there are monic irreducible polynomials in Z[x] which are 

reducible modulo every prime.   
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1. Introduction  

The polynomials of the title of this article have been discussed by Brandl [1], and  

Guralnick et al. [2]. Brandl’s paper excludes those N which are such that  

(N,ϕ(N)) =1. These are precisely the composite integers N for which there is only one abstract 

group of order N. The paper by Guralnick et al. does show the existence of such polynomials 

for all composite N’s. Our proof of the same is different, more elementary, and in some cases 

even constructive.   

We shall first enumerate the known results which we shall use in this article. Several of these 

results are true more generally but we shall state them as needed in this article. 

1)Let f(x)∈ Q[x] be a non-constant polynomial. Then the Galois group of f(x) over Q acts 

transitively on its roots if and only if f(x) is a power of an irreducible polynomial over Q. 

2) Let K1/Q,K2/Q be finite normal extensions that is, splitting fields of some polynomial. Let 

K1K2 denote the compositum of the fields K1, K2,that is, the smallest subfield of containing 

K1, K2, .ThenK is a normal extension 

of Q and if [ K1:Q] and [ K2:Q ] are coprime. Then   

Aut(K/Q ) = Aut(K1/ Q)× Aut(K2 / Q) 

3)Every finite solvable group can be realized as a Galois group of some polynomials over Q. 

Same is true of the symmetric groups Sn and alternating groups An. We shall only need this 

result for cyclic groups, Frobenius groups and for the groups Sn and An [3] [4] and [5]. 
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4) Letf (x)∈ Q[x] be an irreducible polynomials of degree n . Let a1,a2,….anbe its roots. Let r 

be an integer,1< r < n-1 and r

nC = m. Let fr(x)denote the polynomial whose roots are all sums 

of r different α1. Then f(x)∈ Qand f(x) and fr(x)have the same splitting field [6]. 

5) Let f(x) ∈ Z[x] be a monic irreducible polynomial of degree n and p a prime which does 

not divide the discriminant of f(x). Let G= Gal (f) be the Galois group of f(x) over Q. Suppose 

that modulo p the polynomial f(x) factors into irreducible polynomials of degrees n1, n2, …., 

ntSo n1+n2+….+nt =n. Then there isσ ∈G such that as a permutation on the n roots of f(x), σ = 

σ1σ2 …… σtis acyclic permutation of length i n for 1 ≤ i ≤ n . 

See [7]. 

6) Let N be any composite natural number and f (x)∈ Z[x] be a monic irreducible 

polynomial of degree N whose Galois group over Q does not haveany element of order N. 

Then f (x) is reducible modulo every prime. This isan immediate consequence of (5) above. 

2. Theorem and Proof 

Theorem: For every composite natural number N there is a monic irreduciblepolynomial f 

(x)∈Z[x] of degree N which is reducible modulo every prime. 

Case I N is not square-free 

We write N = p
t
m where t > 1 and p is a prime which does not divide m.Let 1 G beany non-

cyclic group of order p
t
 and G2 a cyclic group of orderm. Letf1(x)∈ Z(x) be an irreducible 

polynomial of degree m with Galotsgroup isomorphic to G1 and f2(x) ∈ Z(x) be an irreducible 

polynomial ofdegree m with Galois group isomorphic toG2 Let K1 and K2 be splittingfields of 

f1(x) andf2(x)respectively. Let K=K1K2be the compositum ofthe fields K1 and K2. Then K is of 

degree N over Q and G = Aut (K/Q)is isomorphic to G1×G2 and so it does not have any 

element of order N. Let α 

be any algebraic integer such that K = Q(\α ) . Let f(x) be the minimum polynomial 

of α. Then f(x)∈Z[x] is a monic irreducible polynomial of degreeN and its Galois group does 

not have any element of order N and thereforef(x) has the desired property. 

 

 

Case II N is square-free and gcd(N, φ(N)) > 1 

In this case we can write N = pqm where p, q are primes, p divides q −1and gcd (pq,m) = 1. 

Let G1be a non-abelian group of order pq and G2 acyclic group of order m. Just as in the 

previous case we get a monic irreduciblepolynomial in Z[x] of degree N whose Galois group 

does not contain an elementoforder N. 

Case III, N is square-free and gcd(N, φ(N)) = 1  

In this case N is necessarily odd. First we assume that N is a product of just two primes. So let 

N = pq , where p and q are distinct primes, p < q and p does not divide q−1. Let t be the order 

of p modulo q. So t >1 is the smallest integer such that pt≡1(modq). Let G1 be an elementary 

Abelian p-group of order pt and G2 be a group of order q. We note that Aut (G1) is isomorphic 

to GL t p( , ) and so its order is divisible by q. Let G = G1 ×G2 be the semi-direct product of 

G1 by G2 . Evidently G is not a direct product of G1 and G2. Therefore G2 is not a normal 

subgroup of G. We claim that G2 is its own normalizer in G. For otherwisethe index of the 

normalizer of G2 in G would be pr , for some r, 1 ≤ r < t which would contradict the fact that t 
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is the smallest integer satisfying pt ≡1(modq). Since G2 has prime order q it is disjoint from 

its conjugates. Therefore G is a Frobenius group of order p qt , and every non-identity element 

of G2 induces a fixed-point-free automorphism of  

G1. 

Let  be a normal extension of  with Galois group isomorphic to G. Then [:]=p
t
 q. Let 

H be a subgroup of G of order p
t−1

 and let  ⊆ be its fixed subfield. 

Then by FTGT ({Fundamental Theorem of Galois Theory}) the field  is of degreepq over 

 . We also note that as H is not a normal subgroup of G,  is not anormal extension of  . 

Let α be an algebraic integer such that  = (α) and let f (x) be its minimal polynomial over 

 . Then f (x)∈[x] is irreducible of degree pq.   

We claim that  is the splitting field of f (x ) (i.e. it is the normal closure of the field  ) and 

G is its Galois group over . 

If the normal closure of  were a proper subfield of  then it would imply that G has a 

proper normal subgroup of order p
r
 where r <t , but this is not possible, as G is a Frobenius 

group. Sof (x)∈[x] is a monic irreducible polynomials of degree N = pq and its Galois group 

over  does not have any element of order N = pq. 

Finally assume that N and ϕ(N) are coprime and N is a product of more than two primes. We 

write N = pqm, where p, q are primes and gcd( pq m, ) =1. Let t = order of p modulo q. As 

discussed in the previous case let f1(x)∈[x] be a monic irreducible polynomial of degree pq 

whose Galois group is the semi-direct product of an elementary group of order p
t
 by a cyclic 

group of order q and is a Frobenius group. 

Let G1 denote this Frobenius group of order p
t
 q and 1 denote the splitting field of f1(x) . Let 

G2 be a cyclic group of order m and  f2 (x)∈[x] be a monic irreduciblepolynomialof degree 

m whose splitting field is 2 and Galois group over  is G2. 

Let =12 be the compositum of the fields 1 and 2 . Let pq= n and  

 
We note the following:  

1) [1 :]= p
t
 q,[2 :]= m,[ :]= p

t
qm;  

2) 1=(α1, α2, ,αn ) ;  

3) 2= (β1, β 2
,
, βm ); 

4) 2= (α1, α2, ,αn,β1, β 2
,
,β m ); 

5) G = Aut( / ) is a group of order p 
t
qmisomorphic to the direct product of 

aFrobenius group of order p q
t
 and a cyclic group of order 𝑚𝑚. Therefore it does not 

have an element of order N= pqm. Note that this Frobeniusgroupdoes not have any 

subgroup of order pq.  
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6) The group G transitively permutes the nm algebraic numbers  αiβ j ,1≤ ≤i n,1≤ ≤j m . 

So f(x)∈[x] is an irreducible polynomial of degree N = pqm, whose Galois group 

does not have any element of order N. This completes the proof of our theorem.  

3. Alternate Methods  

As we noticed the construction of irreducible polynomials in[x] of odd composite degree N 

where gcd(N,ϕ(N)) =1, and whose Galois group does not contain an element of order N is not 

so straight forward. In some case such as N =15 or N = 35 there is another interesting method 

of construction of such polynomials. In fact it works for most N’s (with very few exceptions) 

which are such that Cn
r
= N for some n and r such that 1<< −r n 1. The method we are about to 

describe fails in cases where Cn
r
= N but the symmetric group Sn does have an element of 

order N, as it happens when n=15,r= 2 and N =105.  

As the symmetric group on 15 letters does have an element of order  

105 = C15
2 

, namely a permutation which is a product of 3, 5 and a 7-cycle. Let f(x)∈[x] be 

a monic irreducible polynomial of degree n>4 whose Galois group is isomorphic to either An 

or Sn . Let r be such that 1<< −r n 1 and Cn
r
= N . Further assume that Sn does not have any 

element order N. We know that Sn is n-transitive and An is (n− 2) -transitive on n letters. Let 

fr(x) denote a polynomial of degree N = Cn
r
 whose roots are sum of all r different roots of f(x). 

Let the roots of fr(x) be βi, where 1 ≤ i ≤ N. The polynomials f(x) and let fr(x) have the same 

splitting field. Since both Sn . and  

An transitively permute the N, roots of Let fr(x) this polynomial is irreducible. So the 

polynomial let fr(x) is the required polynomial of degree N, whose Galois group does not 

have any element of order N.  

4. Examples  

1)The first interesting case is for N =15. Let f(x)∈[x] be an irreduciblemonic polynomial of 

degree six whose Galois group over  is isomorphic to symmetric oralternating group on five 

or six letters. Then f2 (x)∈[x] is an irreducible monic polynomial whose Galois group is the 

same as that of f(x) and so does not have any element of order 15. Therefore f2 (x) is reducible 

modulo every prime. For instance let f(x) = x
6 

+24x− 20 whose discriminant is  2
16
⋅3

6 
⋅5

6 
. We 

note that 

f(x) ≡ (x+3)(x
5 
+ 4x

4 
+ 2x

3 
+ x

2
 +4x+ 5)(mod7) 

f (x) ≡ (x +7)(x+12)(x+ 21)(x
3 
+ 6x

2 
+13x+16)(mod23) 

f (x) ≡(x
2 
+ 26x+10)(x

4 
+3x

3 
+ 28x

2 
+ 25x+ 27)(mod29) 

It follows that f (x ) is irreducible over  and its Galois group G over  is 2-transitive on its 

roots and has a 3-cycle. Therefore G is isomorphic to A6 the alternating group on six letters 

[8]. We know that A6 is 4-transitive on six letters. Let f2 (x) represent the polynomial of 

degree 15 whose 15 = C6
2
 roots are the sumsof the roots of f (x) taken two at a time. This 

polynomial turns out to be   
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x
15 

− 240x
10 

+520x
9 
−6912x

5 
−8640x

4 
−10800x

3 
−13824 

The Galois group of this polynomial is the same as that of f (x) and so is isomorphic to A6 . 

As A6 has no element of order 15 this polynomial is reducible modulo every prime.  

2)The second example is for N = 35 . As C7
3 

= 35 , we start with a some monic polynomial f 

(x) of degree 7with Galois group isomorphic to S7 or A7 . The polynomial of degree 35 whose 

roots are the sums of three different roots of f(x) is the required polynomial whose Galois 

group (being isomorphic to Sn or An ) does not have any element of order 35. To illustrate this 

we begin with the polynomial f(x) = x
7 

−2x
6 

+ 2x+ 2 of degree 7. We observe that the 

discriminant of the polynomial is 50808364 = 2
6 ⋅38 ⋅11

2
 and f(x) is irreducible modulo 5. 

Also  

f(x)≡(x
2 
+ +7x 1)(x

2 
+11x+8)(x

3 
+ 6x

2 
+ +x 10)(mod13) 

Sof(x) is an irreducible polynomial of degree 7 whose discriminant is a square and Galois 

group G has a 3-cycle. So G is isomorphic to A7 [8].  

Suppose that the roots of f(x) are αi,1≤ i≤ 7 . The polynomial f2 (x) of degree C7
2 

= 21 whose 

roots are α αi+ j ,1≤ < ≤i j 7, is  

x
21 

−12x
20 

+ 60x
19 

−160x
18 

+ 240x
17 

−192x
16 

+14x
15 

+ 282x
14

−384x
13 

−896x
12 

+3456x
11 

− 

4032x
10 

+1452x
9 
+936x

8 
−3348x

7
+8208x

6 
−10800x

5 
+ 6912x

4 
−1944x

3 
+ 648x

2 
−648 x+ 216 

This polynomial is irreducible over  . As its Galois group is isomorphic toA7 which does 

not have any element of order 21 this polynomial is reducible modulo every prime.  

The polynomial f3(x) of degree C7
3 
= 35 whose roots are  

αi+αj+αk,,1≤ i< j <k ≤ 7 , is 

 

x
35

−30x
34

+420x
33

−3640x
32

+21840x
31

−96096x
30

+320400x
29

 

−824892x
29 

+1651824x
27 

−2520656x
26 

+2467968x
25 

+1014144x
24

 

-13570744x
23 

+43939464x
22 

−97466448x
21 

+165719040x
20

 

−229091136x
19 

+279559296x
18 

−328973632x
17 

+369175728x
16

 

−339989856x
15 

+197554480x
14 

−25543680x
13 

+5507328x
12

 

−229676208x
11 

+582038592x
10 

−837493056x
9 
+855433568x

8
 

−666645072x
7
+405962976x

6 
−192746432x

5 
+69432960x

4
 

−17666304x
3 
+2572800x

2 
−58368x−18432 

This polynomial is irreducible over  and its Galois group is isomorphic to  

A7 . As A7 does not have any element of order 35 this polynomial is reducible modulo every 

prime. Its discriminant is the following 311-digit number   

2
296 

⋅3
154 

⋅11
20 

⋅2260889
2 
⋅73504388212873

2 
⋅307711591051853

6
 

Note: The composite natural numbers N below 100 which are such that gcd(N,ϕ(N)) =1 are  

15,33,35,51,65,69,77,85,91,95. 

Among these numbers the method described above works for N = 15, 35 and  
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91. This is so because C6
2 

=15 ,C7
3 

= 35 , and C14
2 

= 91. As starting with a polynomial of 

degree 7 with Galois group isomorphic to A7 or S7 , we constructed an irreducible polynomial 

of degree 35 which is reducible modulo every prime, likewise starting with a polynomial of 

degree14 with Galois group isomorphic to A14 or S14 we can construct an irreducible 

polynomial of degree 91 which is reducible modulo every prime.  

3) The method discussed in the previous examples above does not work for N = 33 . For this 

we proceed as in the proof of our theorem. As the order of 11 modulo 3 is 2 we construct a 

Frobenius group G of order 11
2 ⋅3 which is a semi-direct product of 11 ×  11 by a group of 

order 3. More specifically we extend the group 11×11 = x × y by the group ϕ of order three 

where ϕ is the automorphism of x × y given by ϕ(x) = x y
6 

,ϕ(y) = xy
4 

. It is easily seen that 

this automorphism has order three and is fixed-point-free.The resulting group, the semi-direct 

product of 11 × 11 by ϕ is a Frobenius group of order 363 having the subgroup  11 × 11 

as its kernel and the group ϕ as its complement.  

This Frobenius group of order 363 does not have any subgroup of order 33. Let  / be a 

normal extension whose Galois group is isomorphic to G.  

Let H be a subgroup of G of order 11 and  be its fixed subfield. By FTGT (Fundamental 

Theorem of Galois Theory) the field  has degree 33 over  . Let α be an algebraic integer 

such that  = (α) and let f(x)∈[x] be its minimum polynomial. As proved in the theorem 

this polynomial has degree 33 and its Galois group is a Frobenius group of order 11
2 

×3 = 

363 which does not have any subgroup of order 33 andtherefore the irreducible polynomials 

f(x) is reducible modulo every prime.  

5. Construction of the Polynomials fr(x) 

It remains to be seen that given a degree n polynomial f(x)∈[x] how we can compute the 

polynomial fr(x)∈[x], for 1<< −r n 1. This can be done with thehelp of the concept of the 

resultant of two polynomials. Let  

f(x) = a x0 
n 
+a x1 

n−1 
++an ,g x( ) = b x0 

m 
+b x1 

m−1 
++bm , 

be polynomials of degree n>0 and m >0 respectively (so a b0, 0 ≠ 0) with coefficients in a field 

 . Let αi,1≤ ≤in,βj ,1≤ ≤j m be the zeros of f(x) and g x( )in some extension of  . Writing 

f(x) and g x( ) as simply f and g, and resultant simply as Res we have  

 

 

As this resultant is equal to the following determinant of order m+ n , its value can be 

computed with the help of any symbolic computation package such as MATHEMATICA. 
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In this determinant all the missing entries are zeros. The entries in the first m rows are the 

coefficients of f(x) and those in the last n rows are the coefficients of g x( ). If f and g are 

polynomials in two variables x and y then we can determine their resultant with respect to 

any of the variable. For the discussion of the calculation of fr(x) for a given polynomial f(x) it 

will be convenient to deal with monic polynomials. Let f(x) = x
n
+ a x1 

n−1 
++ an be a 

polynomial of degree n with zeros α α α1,\2
,
,\ n . The polynomial (−1)

n
f x( − y) can be 

regarded as a monic polynomial of degree n in y with coefficientsin the polynomial ring [x] 

. As a polynomial in y its n zeros are x −αi,1≤ ≤in . We note that   

(−1)n f x( − y) = −( 1)n ∏1≤ ≤i n(x− −y αi) =∏1≤ ≤i n(y −(x−αi)). 

This observation and (and similar ones) will be used repeatedly in what follows. As before 

we let fr(x) denote the monic polynomial of degree Cn
r
 with  

zeros αi1+αi2 + +αirwhere 1≤ i1 <i2 <i3 < <ir≤ n. 

We shall show how to find fr(x) for r = 2,3 . The method discussed can be easily generalized 

to larger values of r. 

5.1. Computation of f2(x) 

Let  

 
Then R2 (x) is a polynomial of degree n

2
 with zeros αi+αj. So the n

2
 zeros of R2(x) are 2αi,1≤ 

i≤ n and αi+ αj ,i<j , each appearing twice. Let  

A2(x) = 2
n
 f  

Then A2 (x) is a monic polynomial of degree n with zeros 2αi,1≤ i≤ n . 

Therefore, R2 (x) A2 (x) is a polynomial of degree n
2 

− n, with zeros αi+αj ,i<j,each 

zeroappearing twice. Therefore,  
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5.2. Computation of f3(x)  

We first note that, as a polynomial in y, f2 (x− y) has degree and has roots  

x−αi−αj for 1≤i<j≤ n. In other words we can write  

 

Then R3(x) is a polynomial of degreewhose zeros are of  

following types. 

αi+α j+αk ,i< j<k, each appearing three times.  

2αi+α j ,i≠ j. 

We check that the total number adds up to the right degree, namely  

 

 

We shall now find a polynomial with zeros 2αi+α j ,i≠ j.Let  

 

Here as before we have multiplied by (−1)
n
 to ensure that the first polynomial in the 

argument of Resy is monic. We note that as a polynomial in y  the roots of f are x − 

2αi, for 1≤i≤n. AlsoA3(x) is a polynomial of degree n
2
. In fact  
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So B(x) is a monic polynomial with zeros 3αi,1≤ i≤ n and C(x) is a monic polynomial of 

degree n
2 
− n with zeros 2αi+αj ,i≠ j, 1≤ i j, ≤ n .  

We also note that  

 
 

1

3
3

3
( )

R x
f x

C x

 
 
 
 

  

Is the required polynomial of degree 3
nC . 

6. Addendum  

Bernard Dominique [9] sent us a list of following eighteen irreducible polynomials of degree 

33 and informed us that these are reducible for all primes p <500000.  

x
33 

+ 2x
3 
+1,x

33 
+ +x

6 
1,x

33 
+ +x

6 
2x

3 
+1, 

x
33 

+ +x
6
+1&x

33
+x

6
+x

3
+1,x

33
+x

9
+1, 

x
33 

+x
9
+x

3
+1,x

33 
+ x

9 
+ 2x

3 
+1,x

33 
+ x

9 
+ x

6 
+ x

3 
+1, 

x
33 

+ x
9 
+ 2x

6 
+1x

33 
+ x

9 
+ 2x

6 
+ 2x

3 
+1x

33 
+ 2x

9 
+1, 

x
33 

+ 2x
9 
+ 2x

3 
+1x

33 
+ 2x

9 
+ x

6 
+1x

33 
+ 2x

9 
+ x

6 
+ x

3 
+1, 

x
33 

+ 2x
9 
+ +x

6
+2x

3 
+1,x

33 
+2x

9 
+ 2x

6 
+x

3
+1,x

33 
+ 2x

9 
+ 2x

6 
+ 2x

3 
+1. 

If the Galois group of any of these polynomials regarded as a permutation on its 33 roots had 

a 33-cycle then according to Cebotarev Density Theorem the density of primes p for which 

any of these polynomials is irreducible should be   

. As there is no such prime p <500000 we believe that these  polynomials 

are reducible for all primes. However, in the absence of any information about 

theirGalois group we do not have a proof that any of these polynomials is locally 

reducible for all primes. 

7. Conclusion  

In this paper we have shown that for any composite natural number N there are 

polynomials of degree N with integer coefficients which are irreducible in Z[x] but 

which are reducible modulo p for every prime p and we have given method of 

construction of such polynomials for various values of N.   
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